
NASA Technical Memorandum 83173

NASA-TM-83173 19820002879

NASA LARC RATFOR DOCUMENTATiON

VERSION 1. 0

H. J. Dunn

September 1981

NAS/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
.... NF00233

PERSONi\L COpy

NASA LaRC RATFOR DOCUMENTATION VERSION 1.0

H. J. Dunn

INTRODUCTION

The purpose of this paper is to describe the use of a preprocessor at the
LaRC computer center that converts RATfOR source into FORTRAN source code that
complies with the ANSI 1966 FORTRAN standard. A FORTRAN source of an existing
RATFOR preprocessor was converted to run on LaRC computers. In order for this
to be done, some minor changes were made to the syntax of the language. This
paper describes the RATFOR preprocessor that is implemented at LaRC. The phi
losophy on which RATFOR is based and more details on the language can be found
in reference 1. The primary purpose of RATFOR is to make FORTRAN a better
programing language, for both writing and structuring programs. This is done by
providing the control structures that are unavailable in bare FORTRAN, and by
improving the "cosmetics" of the language. By writing programs in RATFOR, they
will be easier to understand and easy to change if the need arises.

The control flow structures of RATFOR are DO, FOR, IF, REPEAT, WHILE, BREAK,
NEXT and statement groupings with brackets. These structures permit programing
without the use of GOTO statements and result in code that is easier to read.
The cosmetic aspect of RATfOR has been designed to make it concise and reason
ably pleasing to the eye. It is free-form in that statements may appear any
where on an input line. The end of a line generally marks the end of a state
ment, but lines that are obviollsly not finished, such as lines ending with a
comma, automatically continue onto the next line. Multiple statements may appear
on one line if separated by semicolons. The comment convention, a sharp #
anY''1here in a line signals the heginning of a comment and helps to encourage
unobtrusive marginal remarks. Quoted strings are converted into H's. Notations
like II>" convey the meaning of "greater than" more rapidly than equivalent forms
like .GT. Simple string replacement macro's (DEFINE's) and conditional process
ing (IFDEF / IFNOTDEF / ENDIFDEF) arc incorporated so as to increase the
portahility of programs written in RATFOR.

With these two aspects, flow control and cosmetics, RATFOR can generate a
Nell-structured program \'lith source code that is easy to fo11ol'1. This \1ill make
the program easier to develop and in turn will result in more reliable results.

THE RATFOR LANGUAGE

In the following description of the RATFOR language the term "statement"
can either be a RATFOR single or compound statement. A description of the
compound statement is given in the RATFOR language features section. Since an
objective of this report is to provide a reference document for the language,
and not a tutorial, the language elements are listed in alphabetical order.

1. BREAK

The break statement causes an immediate exit from an enclosing DO, FOR,
REPEAT or WHILE loop and continues at the first statement following the
loop. Only one loop can be terminated by a BREAK, even if the BREAK is
contained inside several nested loops. Examples of the use of the
BREAK statement can be found in the examples for each of the looping
statements.

2. DEFINE (symbol=replacement string)

Each occurrence of a defined symbol in the program or INCLUDE file (see
part 6 of this section) is replaced by the "replacement string," which
is then processed as input to the processor. The definition of a
symbol constant can be another defined symbol. Once a symbol is
defined, it cannot be redefined. Defined symbols must be unique
alphanumeric character strings beginning with a letter. There are no
special characters or blanks allowed. Replacement strings can be any
character string less than 70 characters long but must not contain
dollar signs and must fit on one source line.

The replacement string, either in whole or in part, can contain a
simple integer mathematical relationship between one or more defined
symbols and/or integers enclosed in less-than and greater-than symbols
«,». Addition, substraction, multiplication and division are allowed.
Evaluation of the expression is strictly left to right. There is no
hierarchy of the operators. If the expression contains previously
defined constants, they are replaced by their replacement string prior
to mathematical evaluation.

EXAMPLE;

DEFINE(LEXBREAK=-llO)

DEFINE (LEXDIGITS=<LEXBREAK-l»
in RATFOR becomes

B=LEXBREAK

A=LEXDI GITS

B=-110
} in the FORTRAN code.

A=-lll

The passing of a single argument to be included in the replacement
string is distinguished from a simple DEFINE by the presence of at
least one dollar sign in the definition. Any occurrence of a dollar
sign in the replacement text will be replaced by the argument of the
defined symbol when it is actually called.

2

EXAMPLE:

INCREMENT (I)
} in RATFOR becomes

DEFINE (INCREMENT, $=$+1)

I = I + 1 } in the FORTRAN code.

3. DO index=limits statement

The DO statement sets up a standard FORTRAN DO loop. The "limits" must
be a legal FORTRAN DO specification since it is copied into the FORTRAN
code directly. RATFOR supplies the appropriate statement number.

EXAMPLE;

DO 1=1,10 [
IF(I==9) BREAK
IF(I==2) NEXT
K=I-2
]

DO 20000 1=1,10
IF (.NOT.(I.EQ.9)) GOTO 20002
GO TO 20001

20002 CONTINUE
IF (.NOT.(I.EQ.2)) GOTO 20004
GOTO 20000

20004 CONTINUE
K=I-2

20000 CONTINUE
20001 CONTINUE

I in RATFOR becomes

in the FORTRAN code.

4. FOR (initialize; condition; reinitialize) statement

The "initialize" statement is executed, then the "statement" and
"reinitialize" arc executed as long as "condition" is true. The
"condition," "initialize" and "reinitialize" parts are single FORTRAN
statements. The "condition" is tested before each iteration. Any of
the three parts may be omitted, although the semicolons must remain.
A null "condition" is treated as always true, so that an infinite loop
results when the "condition" is omitted.

EXAMPLE:

FOR (X=O.; X<=l.; X=X+.OS)
Y=EXP(X)
IF(Y==O) NEXT
IF(Y>=12.) BREAK
Z=EXP(Y)
]

1
J in RATFOR becomes

3

X:;O.
20006 IF (.NOT.(X.LE.l.)) GOTO 20008

Y=EXP(X)
IF (.NOT.(Y.EQ.O)) GOTO 20009
GOTO 20007

20009 CONTINUE
IF (.NOT.(Y.GE.12.)) GOTO 20011
GOTO 20008

20011 CONTINUE
Z=EXP(Y)

20007 X=X+.OS
GOTO 20006

20008 CONTINUE

5. IF (condition)

statement-l

ELSE

statement-2

in the FORTRAN code.

The ELSE and stiJ.tcment-2 are optional. If the "condition" is.true,
statement-l is executed; if it is false and there is an ELSE clause,
statement-2 is executed. In the absence of brackets, each ELSE goes
with the previous un-ELSEd IF.

EXAMPLE:

IF (I==J) A=l.
ELSE A=2.

IF (.NOT.(I.EQ.J)) GOTO 20013
A=l.
GOTO 20014

20013 CONTINUE
A=2.

20014 CONTINUE

6. INCLUDE/NL filename

} in RATFOR becomes

in the FORTRAN corle.

When the RATFOR program encounters an INCLUDE statement, the contents
of the local file with the name "filename" are read in as source and
processed. When the end of the file is reached, the input of the
preprocessor reverts to the next line of the original file. The
include file may he nested three deep. The /NL is an optional "no-list"
switch used to suppress the listing of the file in the output listing.
Any include statements within the file with the no-list switch
specified will not be listed, regardless of the sl11itch settings on
their INCLUDE lines.

4

7. NEXT

The rest of the containing loop is skipped and program continues with
the next iteration of the loop. For the DO, REPEAT ... UNTIL and WHILE
statements the control is to the "condition" test; for the FOR state
ment, the control is to the "reinitialize" statement; and for an
infinite REPEAT, the. control is to the top of the loop. Examples of
the NEXT can be found in the examples for each looping element.

8. null statement

; (used by itself)

The semicolon may be used anywhere that another RATFOR statement may
be used.

9. REPEAT statement

UNTIL (condition)

The "statement" is executed until the "condition" is true. The
"condition" is a single FORTRAN statement that is tested after each
iteration. The UNTIL statement is optional and if omitted the result
is an infinite loop.

EXAMPLE:

REPEAT [
A~A+l.

IF(A==7.) NEXT
Y=F(A)
IF(Y==O) BREAK
]

UNTIL (A==O. ++ Y==lOO.)

20015 CONTINUE
A=A+l.
IF (.NOT.(A.EQ.7.)) GOTO 20018
GO TO 20016

20018 CONTINUE

1 I in RATFOR becomes

Y=F(A) in the FORTRAN code.
IF (.NOT.(Y.EQ.O)) GOTO 20020
GOTO 20017

20020 CONTINUE
20016 IF (.NOT.(A.EQ.O .. OR.Y.EQ.lOO.)) GOTO 20015
20017 CONTINUE

5

10. WHILE (condition)

statement

The "statement" is executed as long as the "condition" is true. The
"condition" is tested before each iteration.

EXAMPLE:

WHILE (B <=3)
X=XYZ (8)
IF(X==2) BREAK
Y=)(+3
IF(Y==2.5) NEXT
Z=Y-78.
]

20022 IF (.NOT.(B.LE.3)) GOTO 20023
X=XYZ(B)
IF (.NOT.(X.EQ.2)) GOTO 20014
GOTO 20023

20024 CONTINUE
Y=X+:J
IF (.NOT.(Y.EQ.2.S)) GOTO
GOTO 7.002?

20026 ~
20026 CONTINUE

Z=Y-78.
GOTO 20022

20023 CONTINUE I

in RATFOR becomes

in the FORTRAN code.

RA TFOR LANGUAGE FEA TlIRES

1. COMMENTS

A sharp sign It used an)",lhere on a 1 inc causes the rest of the line to be
treated as a comment. The sharp sign may occur in the first column, if
desired, replacing the FORTRAN "C" in column one. In this case, the entire
line is converted to uppercase and copied into the FORTRAN code as a comment
(unless the JCO s1!Jitch is in effect; see the Command Line Options section).

2. COMPOUND STATEHF.NT

Brackets [], can be used to enclose single or multiple RATFOR and/or FORTRAN
statements so that the enclosed block of statements may be used an~~here
that a single RATFOR statement may he used.

6

3. RATIONAL AND LOGICAL OPERATORS

Since symbols are clearer than the .EQ., .GT., etc. used by FORTRAN, RATFOR
allows the use of conventional mathematical symbols. These symbols are
converted into the equivalent FORTRAN according to the following:

> for . GT.

--- for .EQ.

>= for .GE.

\= for .NE.

< for .LT.

<= for .LE.

\ for .NOT.

++ for .OR.

& for .AND.

4. CONTINUATION LINES

RATFOR source code lines are automatically continued if:

1. The statement is obviously incomplete at the end of the line, as :i.n the
middle of the conditional part of a FOR or IF statement.

2. The line ends with a comma.

3. The line ends with an underline chn.racter " " (the underline character
is not passed to the FORTRAN output).

5. QUOTED STRINGS

Quoted strings are converted into the equivalent Hollerith string.

6. IFDEF / IFNOTDF.F / ENDIFDEF (Conditional Processing)

Sections of RATFOR code (one or more lines) can he selectively processed
into FORTRAN or ignored, depending upon the current define symbol status of
a specific constant. When "IFDEF(symbol)" is encountered in the RATFOR
source code, a check is made to see if "symbol" has previously appeared in a
DEFINE statement; if it has, the source code up to the balancing ENDIFDEF
statement is processed; if not, the source code is skipped until the
balancing ENDIFDEF is found. The "IFNOTDEF(symhol)" is similar, except that
that the RATFOR source code up to the balancing ENDIFDEF is processed if
"symbol" has not been previously defined.

7

The symbolic constant can be given a null definition, if it is being defined
only for use with the INDEFjIFNOTDEF statements (e.g. DEFINE (foo=) is
sufficient). IFDEFs (and IFNOTDEFs) can be nested; if an outer.conditional
is unsatisfied, all inner conditionals are skipped, just like all other code
within the unsatisfied conditional.

Undefined conditional code (that not processed into FORTRAN) is normally
printed in the RATFOR source listing, but will have no source code line
numbers on the left-hand side of the page. The JIF cow~and line option can
be used to suppress the listing of the undefined conditional code.

7. LITERAL LINES (%)

If a percent sign ni) occurs in column one of a RATFOR source code line, the
entire line except for the percent sign will be passed to the FORTRAN code
without any modification whatsoever.

8. DEBUG LINES (?)

If a question mark (?) occurs in column one of a RATFOR source code line, it
is considered to he a debug line and will be processed into FORTRAN (minus
the question mark) only if the JOE (DEBUG) switch was specified in the
comm3.nd line (see next section). Multiple levels of debug statement can be
specified by a digit (1-9) in the second column (after the "?"). Debug
lines \'Those level is equal to or greater than the level specified in the
JDE:n switch are processed, but lines with a lower level are not processed
into FORTRAN. Lines \",i th no level specified (blank in column two) are
al\·mys processed if the JDE switch is specified. A JOE switch ,,,,ith no value
causes all debug lines to be processed. For example, the line:

?3 PRINT X

would print the value of the variahle X only if the command line contained a
JOE or JDE:n, with n ~ess than or equal to 3.

9. STRINGs

Since character processing frequently requires the usc of strings, the
preprocessor adds the STRING data type to FORTRAN. In FORTR~N, a STRING
becomes an integer array with one character per element, plus one element
for the terminator (end-of-string character). The number that is assigned
to each work is the value of the ASCII character code.

EXAMPLE:

STRING FOO "BLi\TZ"

becomes INTEGER FOO(6)

DATA FOOj66,76,65,84,90,cosj

8

Note that the STRING function requires that the symbolic constant "eos" be
defined when the STRING keywork is first encountered; otherwise "eos" will
be passed to the FORTRAN code as is and upset the compiler.

Since ANSII standard FORTRAN requires that all DATA statements must be
grouped together and placed in the FORTRAN code after all other specifica
tion statements, but before any executable statements, STRING statements
must be grouped together and appear in the RATFOR source code after all
other specification statements but before any DATA statements. The pre
processor holds all the DATA statement parts until the "integer" statement
parts for all STRINGs have been transmitted to the outer file and then
outputs the DATA statements as a group. There is a limit of 12 string
specifications statements with a total of 150 characters in anyone program
module.

COMMAND LINE OPTIONS

The command line switches are available to control the actions of the
preprocessor.
first recorded
heading of the
/NOSh' or / -sw.

/CO compress

/DE:n debug

/FO fortran

/FT ftn

/IF ifdef

/LC 10\'ler case

/LI list

The command switches must be contained in a comment line that is
in the file. This comment is printed as the second line in the
output listing. Where appropriate, a switch can be negated hy

The folJOI'ling nre the command line switches:

Causes the FORTRI\N code that is generated by the preprocessor
to be compressed for faster I/O by eliminating all comments
and unnecessary blanks in the generated FORTRAN code.
Default: /NOCO.

Causes all lines heginning I'lith a question mark in column one
to be processed into FORTRAN code; by default such lines are
ignored. If n is specified, only debug lines with an equal or
highcr value in column two will be processed.

Causes the generated FORTRAN code to be included at the end of
the listing. Default: /NOFO.

Generate FORTRAN source code. Default: /FT.

Causes RATFOR source
(IFDEFs that arc not
not to be printed in
IFNOTDEF statement.

code within unsatisfied conditionals
defined or IFNOTDEFs that are defined)
the listing file, except for the IFDEF or
Defaul t: /NOIF.

Cause the generated FORTRAN code to be in lmver case charac
ters. Default: /NOLC.

Generate the RATFOR listing. Default: /LI.

/SY symbols list List the defined symbols table. Default: /NOSY.

9

PREPROCESSOR USE UNDER NOS

The RATFOR processor is run by using the following NOS commands:

GET,RATFOR/UN=236939N.

RATFOR(INPUT,OUTPUT,COMP)

The three files that are used by RATFOR have the default names of INPUT, OUTPUT
and COMPo The RATFOR source code is read into the processor on the INPUT file,
and must not have a record length greater than 181 characters. If a different
command line is to be used for more than one program module, these modules must
be separated by an EOF mark. This can be done hy using the COPYBF command to
copy each file into a temporary file and passing this file to the RATFOR
processor. The RATFOR listing is written to the OUTPUT file and the FORTRAN
source code is written to the COMP file.

After a program has been processed by RATFOR, the program control registers
Rl and/or EF may be examined to determine if there \~ere any detected errors in
the RATFOR source code. If an error or errors have occurred in the source code,
but the preprocessor was able to process the entire file, Rl will he 1 and EF
t~ill be O. If the preprocessor has had to abort, Rl will be 1 and EF will be 4.
The distinction is made hecause in the first case the user may want to correct
the FORTRAN source and continue. Being able to do this in the second case is
very optimistic. If no errors 'verc detected, Rl and EF arc o.

PROGRAM EXAMPLE

The follOl~ing program gives an example of RATfoOR. It is not exhaustive hut
should help in the understanding and use of RATFOR. The program selected for
the example will copy the input file to the output until an end-of-file condi
tion is raised. Since the internal ASCII character set is used, lower case and
terminal control characters may be transmitted to and from a TELEX terminal with
relative easc.

10

PATFJR 1.0, FTN 4.7+485 ~AY Z9, 1981 2:24 PM PAGE 1
, PROGPAM FOR RATFOR EXAMPLE IFO/SY

1
2 (>

3 (>

" (>

5 •
6 * 7 '" 8 •
Q '" 10 * 11 * 12 * 13 •
14 «
15 (>

If> '" 17
25
26
27
28
Z9
3:>
31
32
33
34
35
36
37
3~

39
40
41

e P~OGRAM F1R RArFOR EXAMPLE IFO/SY
INCLUDE SETUP
DEFINEIMAXLINE e 91) , MA~ WIDTH OF OUTPUT LINE
DEFXN~(DECPEMENTpSo5-1J
OEFI~EIINCREME~TDo+11

DEFINEIMAXarO) 0 MAX STRING LENGTH
DEFINEIMAXDISPlAya<MAX+!>J , MAX D!SPLAY LENGTH
nfF!.NEIBUFFERlENa<3*MAXDISPlAY+3>/<MAXDISPLAY+!» G INPUT/OUTPUT BUFFER SIZE
DI'FINEIBAD"-l)
DEFINEIYESalJ
DE F! t-i E IE 'J F ,,- 3)
DEFINEIEOSeOI
DEFIN~IDU~~YSIZE·1)
DEFJNE(TAPE~~eTA~E$)

DfFIN~ISTDI~o5J ~ STANDARD INPUT UNIT NUM~ER
OEFtN~ISTDaUT·6) , STANDARD OUTPUT UNIT NUMB~R
DEFIN~(HUGE~32767J

INCL0DUNl ~",AR

~RJGRAM ~XRATIINPUTD3UFFERlEN. e INPUT FILE
OUT?UT~BUFFERLF.Ng e OUTPUT FILE
TAPENO(STDtN) a INPUT, n INPUT TAPE NUMRER
TAPENO(STOOUT I n OUTPUT J ~ OUTPUT TAPE NU~qER

I~TEGE~ IQ,BUFFERIMAXOISPLAV)
INTEG~~ ~TRPUr,SlRGET

ST~l~G START ~SrART OF INPUT"
IQa3T~PUT(SlQOU1,STARTJ
PEPE AT [
IO~ST~r,ET(ST1IN.BUFFER,M4X) ~ GET T~PUT STRING
TFIIO an E~F) BREAK 6 STOP IF DONE
IQaST~PUTISTQOUT,9UFFERJ G WRITE STRI~G TO OUTPUT
]

WRITf(.5TOOUT,l)
1 Fn~~AT(lJx,"END OF INPUT")

H'JP
E'''lf'

R6T~GR 1.0, FTN 4.7+485 MAY 29, 1981 21Z4 PM PAGE Z
a PRrr,PAM F1P RATFnR EXAMPLE /FO/SY

4Z
43
44
45
46
47
4Eo

_ 5lEN - COMPUTE LENGTH aF STPING

INTEGE'R FUNCTION SlEN(STRJ
INTEGER $TRIDUM~YSIZE)

DO SLE>J-1,HUGE
IFIST~ISLENJ .a E1S J BREAK

DECRE'MENTlSlE~J • WENT 1 'TOO FAR
RETURN
E NO

11

RAIFQR 1.0. FTN 4.7+48~ t-'AY 29, 19f!1 212', PM PAGE 3
, PR[G~AM FOR ~AIFUR EX~MPLE IFO/SY

49
~o

51

52
~3
54
55
56
';7
5A
~9

to
61
62
t3

~'"
6~

M
t:>7
ffl
69
7C'
71
72
73
74
75
76
77

1/
b STRPUT - ~RITE • STRI~G TO A SPECIFIED LUN
'~J DUN~ AP~IL 14. 1981

INTFGER FUNCTION STP~UTILUN,STRI
INTEGER LUN.I.N,SLEN,MINO.r.EOF
INTEGER STRIOUM~YSIZE), OUFF(MAXDISPLAY)

I=MTNOIM'XLXNE.SLFNI5TRII
JFISTRll) ~o FORMFEEO) [

OECRE'1E~lT! I)
IFII ,,,, 01 [

~RITEIL~N.21 h ~E~PAGE O~LY
QETUQ'J]

~ALL JUT~A~ISTR(2)#I.BUFF.NI

wRITEILUN.~1 !~UFFIII,I.l,NI ~ NEW PAGE WrT~ YEAVER
2 F1q~AT(lYl. ~AX~ISPlAY Rl I
]

tL~F [
IFI I •• u I [

~RITEIlUN.ll ti BLANK LINE
~ETlIRN]

ELSE [
CALL nUTMAPISTR.l.~UFF,NI

WQTTEILUN.ll IBUFFII).I-l.~1 • PRINT SINGLE LINE
1 F1R'1ATIIX. MAXDISPlAY ~ll
]

]

IFI CEnFILllNI '.0 H IOCHECILUNI '.01
SlI<PUT-ElAD

ElSF.
STQPUT-Yi=S

~ETUQN

EN!)

RATFuR 1.G. FTN 4.7+48'; "'AY 2Q. 1981 2:24 PM PAGE 4
* PRnGPAM FOP RATFOK FXAMPLE IFO/~Y

78
79
8Ci
Ell
"2
El3
84
85
f'b
87
SR
89
90
en
92
93
94

1/
• STRGET - ~~AO A STRIN~ FKOM A SPECIFIED LUN
II

INTEGER ~UNC1[r~ SlR~ETllUN, STR, ~AXSI

INTEGFR LUN.ST~I~AXSI.BUFFI~AXDI~PLAYI

READ IlUN.ll ~lJFF
1 F~R~ATIMAX~I~PlAY Rll
IFICfJFILU~1 ,= 0 I [

ST~GETDEOF

S T{ Ill-EOS
KE TURN
]

!FIIOCHECILUNI ,. 0 1 [
S TRGET-'3AO
ST~llI·EOS
RETURN
]

CALL JN~'PIBUFF.HAXDISPLAY,STR.MAXSI • CONVERT DISPLAY TO ASCII
~ETU~N

END

12

RATFGR 1.0, FTN 4.7+465
fj PROGRAM H)R RA HOR EXAMPL'= IFQ/S'(

95
9b
97
98
99

/j

~ CEOF - ~IODEN EnF F~NCTION
~HJ DUNN, AP~IL 14, 1981

1~IEGER FUNCTIO~ CEO~(LUN)
t I~TEGER EOF.lUN
r. CEJFeEQFILUN)

ilETUR"l
END

RATFOR 1.0, FTN 4.7+485
~ PROGRAM FOR RATFOR EXAMPLE IFO/SY

C

2124 PM

Q INMAP - C1NVERT D!SPL4Y CODE TO INTERNAL ASCII
nHJ DUNN. APRIL 10. 1081
II

SURRDUTI~E IN~AP(STRlbMAX!,STROb~AXO)

PAGE 5

PAGE 6

100
101
102
103
104
105
lOb
107
108
109
110
111
112
113
114
115
llb
117
118
119
120
121
122
123
124
125
12b
127
128
129
130
131
132
133
134
135

INTEGER ST~I(DUMMYS!ZEI.MAXI, n INPUT STRING (LEN-MAXI)
STRJIDUM~YSIZEI.MAXJ, C OUTPUT STRING (LENaMAXO!
DSPLY(2.041.uSPLY1181 0 DISPLAY CODE INPUT CHAR

INTEGER J -
DATA OSPlYl lO.b4.94.37.58.3~Ol
DATA (\SPLYI 53. 96. 65. 97. bb, 98, 67. 99. oR, 100.
69. 101. 70. 102. 71. 103, 72, 104, 73, 105.
74. 106, 75. 107. 76, 108, 77. 109, 78, 110.
79, Ill. 80, 112. Rl. 113, d? 114. ~3. 115.
A4. J.l6. 85. 117. 66. 118. 87, l.i.9. 8b. 120,
~9, 121. 9u, 1220 48. 123. 49. 124. 50. 125,
51. 126. 52. 127, 53. O. 54. 1, 55. 2.
5f.. 3. 57. 4. 43. 5, 45. 6. 42. 7,
47, 8. 40. 9, 41. 10. 36. 11. 61, 12.
32. 13. 44, 14. 46. 15. 35. Ih Q1. 17.
~3. 18. 37. 1~. 34. 2U. 95. 21. 33. 22.
3'3, 23. 39, 24, 63. ~5. 60, 26, 02. 27,
"4, 28, 92. 29, 94. 30. 59, 311
1("0
~uRIJ·l; J<"M~xr & K<-~AXO ; INCREMENTIJ) I [

INCREMI;NTlK)
IFISTRIIJI as DHAT) [

INCREME'lTIJ)
STQQ(K)~DSPlYI2,STRIIJI+1)
]

ELSE
I~I~T~lIJI ... OAT) [

~N~REME:HIJI

jTROIK)·DSPLY1ISTQIIJI+1)
]

!'LS E
ST~JIKI • OS~LYll,STRIIJ)+l)

t >le ll ~t'F!HII<)

5TI;>I'1(K)·~OS

'IETlJRN

PATFGR 1.J, FT~ 4.7+485 "'AY 29, 1961 2124 PM
• PRGGR4 M ~OP RATFOR EXAMPLE IFO/SY

136 '= NO

13

PAGE 7

RATFO~ 1.0. FT~ 4.7+4e~ MAY 29. 1981 2:24 PM PAGE 8
• PRCG~AM F~R ~ATFOR ~XAMPL~ IFO/SY

137
13'3
139
140
141
142
143
14',
145
146
147
148
149
150
151
152
153
15',
155
156
157
15~
159
160
161
162
163
164
1b5
1bb
167
168
1b9
170

It
~ G~TMbP - CONVE~T ASCII CHAR SET In DI~olAY CODE
UHJ DUNN, A~~IL 14, 19~1

II

~

!
!
~
~

'.: ,.
f.
7.;

'.

" /.

'1.

"

SU~QOUTl~E OUTMAP(STRI.I,STRO.O)
t~TEGFQ SrRI(DUM~YSIlE).I. ~ I~PuT STPI~G (LEN-l)

~TP~(J~~MYlllE)DOP U OUTPUT ST~ING (LENcQ I
OI5PLY(1281, /j DISPLAY CuDE OUTPUT CHAR
J.C

OATA OISPLY IIR5.1Rb.1R7.1RP.IR9,lQ+,lR-.IR*,lR/,lR(,
$ li(l,lRt,il1 c ,H .1tl"lR •• l~~DlR[,1"],lR~.
s 1~".lR_.IR!.1~&.lR·.lR?lRC.IR>.748.1R',

~ 76B.IR;.lR ,l~!.lR".
, lR~.lR$.lQ'1..]~&,lR'.lR(.lR).lR*.lR+.1g ••
~ 1R-.IR •• 1~/,1~0.lRl,lR2,IRl,lR4.1R5.1R6.
~ 1~7.!l1d.lR9.1~:.1~;.lR<.1~a.lR>.lR?74~,

$ lRA.lR3.1RC,1~D.IRF.lRFplRG.IRHplRI.IRJ.
$ lRK.lKL.lR~.l~NplRO,lRP.lRO.lR~,lRS.lRT,
$ lQU.lRV,lRW.l~X,lQY,lRZ,lR[,lR\.lRJ.76B.

$ 1~_.1R:;1~A~1~~,I~C.1RD,lRE.IRF,IRG.IRH,
~ l~I,IRJ,lRK,I~L,lR".l~N,lRO,lRP,lRO.IRR,

$ lQS,lRT.lRU,l~V.lRw.lRX,l~Y.lRZ.l~O.lRl,

, lR2,lR3.1R41
'JaO
DO J"l,I [

CcS1'1l(JI
IF(C >~ CNTLA & C Cn DELI [

]

RETURN
EfIlD

IF(C < BLANK ++ C > U~DERLINE I [
INC~EMENT(OI

STRO(OlaDHAT
J

IN: R E" E ~ TI C I
INCREME'lTlOI
ST~O(ulaDISPlY(C)
]

RATFOR 1.0. FTN 4.7+48:) MAY 2Q. lQBl 2124 PM PAGE 9
e PRDGRAM FQ~ ~ATFuP. EXAM~LE IFIJ/SY

SY"~JLIC CQNSTANT - DEFINITION

1 lllD .. -1

2 BlAt'.1< - 32

3 l'!JFHQL~N a 246/f!2

4 CUTLA .. 0

5 OAT .. 74R

t,. OtCPE'IH'T - '-$-1

1 nFL II 127

IJ O'"lAT - 7(-'3

9 OU;""YSIlF. - I

10 E'lF · -3

11 F. iJS " C

12 FiJRI"FE:FD · 12

13 HU-::I; .. 37767

14 INCR~M"NT · $= $+ 1

15 "AX · 1''1

16 ,.AX·)lSPlAY .. 01

17 ~AxLI"'E - 91

18 .:;TO 1 N · 5

lQ !iTOQUT .. f-

20 TAPt:NQ .. TAPE'
21 UN'ltRLINE .. 95
22 yes " 1

14

RATFOQ 1.O~ FTN 4.7+485 ~4V 29. 1981 2324 PM PAGE 10
e PROGRAM ~nR RATFOR EXAMPLE IFO/SV

1

2
3
4
5

6
7
8
q
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29

3(;

C PROGRAM FJR RATFJR EXAMPLE 'FOISY
PROGRAM EXRAT « I~PUT • 246 , 82. OUTPUT " 246 , 62~ TAPE 5 •

tINPUT, TAPE 6 a OUTPUT)
INTEGER 10. BUFFE~ (81)
INTEGc:n STRPUT. SrRGET
!NTEGER START (15)
DATA STAQT 183. B4, 65, 82, B4, 32. 79. 70. 320 73, 780 80, 8'.

M4, 0 ,
IQ " STRPUT (6. START J

20000 CONTHIlIE
IQ " STRGET (5. 8UFFER, BO)
TF (.NOTo! HI .EO. - 3)) GOm 20003
GOTO 20002

20003 CONTIMIE
10 " S TRPUT (6. 03LJFFER)

20001 GOTO 20000
20002 COMTlNUE

wRITE (6, 1)
1 ~~R~AT (lOX. 12HENO OF TNPUT)

S TI)P
END

C
C SlEN - COMPUTE lENGT~ OF STRING

INTEGER FUNCTION SlEN (STR
INTEGC:R SiR (1)
DO 20J05 SLEN B 1, 32767
IF (.NOT.(SrR ()LEN) .1;0.0)) GOTO 20007
(;OTI) 20006

2(,007 CONTINUE
20005 CONTI"lUE
200:16 CONrINUE

c

SLEN • SLEol - 1
RFTUR"l
FNI)

C STPPuT - W~ITE A STRING TO A ~PECI~IEO lUN
CHJ DUNN APQIL 14, 1981

INTEGC:R FU~CTION 5TRPUT (lUN, STR

15

RAT~QR 1.0, FT~ 4.7.4~~ MAY 29, 1981 PAG~ 11
• PR~GQA~ FOR RATFOQ EtAMPLE IFO/~'

31
32

33
34
35
36
37
311
39
40
41
42
43
44
45
46
47
46
49
50
51
52
!:3
54

55
56
57
58
59
flO
~1

~2
t3
64
65

INTEG!,I(LU'Ib 16 N, SlEi-u '11 NO. CEOF
tNT~G':O{ ST~ (1) . ~UFF (f3l)

C
r .. MI~O (91, SlF:N (STo I)

IF (.NJT.(S rR (1 I .EO. 12 II GOT~ 20009
1 a I - 1
t F (.IIlJT. (I .EO. 0 II (;JTO 2u011
WRITE (LU ~. 2 I
R ETUR'~

20011 C'1"l rINtiE
CAll ::JUTMAt> (srR (2 I. I, ~UFF. N)

WRITE (lUN, 2) (flUFF (1) . I .. 1, N I
7 F'lflMt.T (lOon. 91 U)

GOlD .?\lOJ,O
20009 C'1'HI'llJE

IF (.~'JT 01 I • E Q. 0) I G HO 701)13
WRITE (lLJ~. 1 I
RFTLlQ.'

2('u13 cn"lTJNUE
C fill '1UTMAP (STP, I, RUFF. N I
,",RITE (lU'I. 1) (BU FF (1 I, 1 .. I, N I

1 FlJiHIIIT (H, 81 Rl I
20014 COt.JTlNUF
2e01O CONTiNUE

IF (.~I)T. (CEOF (lUN) .~E. 0 .OR. tOCHEC (lUN) .NF. 0 II
$GLlTO 20u15

STOPUl a - 1
GOT'] 2001t

2001, CO~H I~U F
S Til P UT " 1

2(.016 CIJNTJi~UE

RFTlJR"l
FNO

r.
: STOGET - ~EA~ 1\ STRING FROM II SPECIFIED lUN
C

1

INTEGER FU~CrION STR(;ET (lUN, STP, MAX$
INTEGER lU~, STR (MAXS I, gucF (81)
~EAO (lUN, 1 I BUFF
FI)~MAT (Fl Rl I

16

PAT FOR loO~ FTN 407~48~ PAGE 12
n PROGRAM FQR ~ArFOR EXAMPLE 'FOISY

t{J

t:7
(-0
69
70
71
72
73
7{)

75
76
77
76

79
80
81
P2
1'3

84
E5

86
67
88

IF (o~1T. (CEGF (LUN loNE. 0 II GJTO 20017
STRGET " - :1
S TI1 , .1. I a {)

REiiJR"l
ZC017 :ONTXNlIF.

If (o'~Ho(I1C'~EC « LUN) .N!'. 0 II GIJTO 200!9
SlRGfT " - 1
STR (1 I " I)
REnJR'~

2C019 CONTINUE

c

CAll [NM~P (BUFF, 81, STR, MAXS I
flETUfl'l
Et-,JO

C CEOF - ~IJDEN EOF FU~CTION
C~J DUNN. AP~lL 14. 1981
C

c

INTEG~K FU~CTIQN CEGF (LUN I
INTEGER EOF,LUN
CE3FaE-JF(lJN)
RETUIH~

Et-JO

C INMAP - C1NV~RT DISPLAY COOF TO INTERNAL A~CII
CHJ DUNN, AD~ll 10. luBl
C

SUdrlOUTl'lE INMAP (SIRI, ,..AXI, STRO. MAXO I
It\TEG~~ STRI (1 I, :-lAXI, STRLi (1 I, :-lUQ, OSPLY (2. M I.

f,OSPLYl (e I
INTEG!"~ J
DATA DSPl Yl I 0, ~4. 94, 37. 5'3, 3 • 0 ,
OATh nSPLY I 56. '16. 05, 97. 06, ge, 67. qq. 6'3, 100. 69. 101, 70

\. 102. 71, 103, 72. 104. 73. 105, 74, 106. 75, 107, tbg lu8. 77.
$109, 78, 110, 79, Ill. 8), 112. ~1. 113. 82. 114, P.3. 115, 84,
$116, ~5. 117. 86. 118. 87. 119, 88, 120. 89. 1~1. 90. 122. 48~
t123, 49, 124~ 50. 125, 51. 12b, 52, 127. 53, V. 54, 1. 55, 2, 5~,

$ 3, 57, 4. 43, 5. 45, b 42, 7. 47, 8, 40, 9. 41, 10. 36. 11. 61.
$ 12. 32. B. 44, 14. 4b 15. 35. 16. 91. l7. 93, 1B, 37, 19, 34,
$20, 95. 21, 33, 2~, 3R, ~3, 39. 24. ~3, 25. 60. 26, 62. 27, 04.
$28. 9~. 29. 94. 3J~ 59, 31 ,

17

~AT~u~ l.v. FTN 4.7+485 '1Ar 29. 1981 2124 Pf1 PAGE 13
• PROGRAM FOR RATFQ~ EXAMPLE IFa/sr

89
90
91
92
93
94
95
9b
97
98
9Q
100
101
102
1(;3
104
105
lOb
107
108
109
110
111
112

113
114
115

K .. 0
J • 1

20<121 IF (.~(JT.(J .LI:. ~AXI .~ND. t< .LE. '1AXO)) GOTI) 20023
K D K + 1
IF (. id T. (
J • J + 1
STRa (K)
GOTI) 7.0025

STR! (J) .EJ. 7b~)) GOTJ 20024

.. DSPLr 2. 5THl (J) + 1

20024 rr.NTI~IUE

IF (."II)T.(
J " J + 1
)TR,) (K)

~TIlI (J

• OSPL Yl

.EJ. 748)) r,OT::J 2002b

J + 1
GOTI) 20027

2002b CONTINUE
$TRfJ (K

20027 CONTl"iIJE
20025 cnNT 1,-.UE
20022 J •• 1 + 1

D D'; P'-' (1. STR 1 (J) + 1)

GOTO 20021
20023 CONTI'WE

C

K • K + 1
S Til a (K)
RETUIHl
I'NO

• 0

C OJTMAP - cnNVE~T A~CII C~AR 5ET TO DISPLAY CODE
C~J DUNN. APRil 14. 19P1
C

SU8RIJIJTlNE fJUTMAP (ST~r. I. 5 TRO, r))

INTEGE~ SUI (1). 1. 5TRO (1). Q. DISPLY (128), J, C
DATA nISPLr /IR~.tRb.lR7.1R8,IR9.1R+.IR-.IR •• IR/.1R(,

, 1R).lR$.lR.,1~ ,lR,.1R.,lR.,1R[,lRl,1R1.,
$ LR",lP_,lR!,lR&.1~',lR1,lR<,IP>,74B,lR\,

$ 7b8,1~;,IR ,IR!,IR~,

$ lR.,lR$,lR~,l~&,I~',l~(,IR),IR·,IR+,lR"

$ lR-,lR.,H/,I~J,lo(l,lR2,lR3,lR4,lR5,lRb,

$ 1P7, l~B, lR9, lRt , J,R;, 1R<, Ilh, lR>, lR1,74(\,
$ lR4,lRB,lRC,lR',lRE,lRF,lRG,lPH,lRI,lRJ,
$ H~, lRl. lRI', HN, 1~::J, lRP, IRQ, 111", IRS, 1RT,
$ 1~U,IKV,lRW,lK~,I~Y.IRZ,lR[,lR\,lPl,708,

RATFOR 1.0, FTN 4.7+485 Z 124 PM PAGE 14
, PROGRA~ FaR ~ATFOR EXAMPLE /FOlsr

11b
117
118
119
12(1
121
122
123
lZ4
125
126
127
12A
12q
130
131

2(,032

ZC.C30
20029
Z0029

~

$
l'
$

lR_,1RI.IRA,IR~.IRC,lPD,lQE,lRF,IQG,IPH.

lRI,IRJ,lRK,lRL,lRM,lKN,lRO,IPP,IPO,lRR,
lRS,lRT,lRU,lRV,lRw,lRX,lRY,lRZ,IRO.1R1,
lI1Z,IP3,IR4/

n • 0
Du 20028 J. 1, I
C • STRI (J)
JI= (.;~OT.(C .GE. C .ANO. C .LE. 127)) GOTO 20030
11= (.~OT.(C .LT. 32 .OR. C .Gr. 95)) GOTO 20032
o • 0 + 1
S TR 0 (a) • 76 B
C'JNTINUf
C • C + 1
a • 0 + 1
STRO (0) • OISPLY (C)
CONTINUE
CONTINUE
cnNTINUE
RETUR"l
ENn

18

REFERENCE

1. Kernighan, Brian W.; and P1auger, P. J.: Software Tools. Addison-Wesley
Publishing Company, c. 1976.

19

r-------------,...---------------r------ ... -.. --I 2. Government Accession No. I 3. Recipient's Catalog No. 1. Rpp.ort No.

r\1\SA TM-R3173

4. Title and S"ht!!!e

NASA LaRC RATFOR DOCUMENTATION VERSION 1.0

7. Author(51

H. J. Dunn

5. RrDOrt Date

Scptcmbel' 1981
6. Performing Organization Code

505-34-33-05
8. Performing Organization Report No.

I-----------------------------.:...-----i 10. Work Unit No.
9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

15. Supplementary Notes

16. Abstract

11. Contract or Grant No.

Technical Memorandum
14. Sponsoring Agency Code

NASA LaRC implementation of the preprocessor RATFOR is described. RATFOR is a
preprocessor that can he used to generate a well-structured program with source
code that is easy to follow.

17. Key Words (Suggested by Author(s») 18. Distribution Statement

RATFOR
structured programing
preprocessor
FORTRAN

19. Security Classif. (of this reportl

Unclassified

20. Security Classif. (of this page)

Unclassified

Unclassified - Unlimited

Subject Category 61

21. No. of Pages

20

22. Price·

A02

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

